ANDS Services - Demonstration Environment - development

Dataset

Enrichment and heterogeneity of trace elements at the redox-interface of Fe-rich intertidal sediments

Southern Cross University
Ahern, Col R (Enriched by) Burton, Edward D (Enriched by) Bush, Richard T (Enriched by) Dundon, Matthew (Enriched by) Johnston, Scott G (Enriched by) View all 10 related researchers
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi 10.4226/47/550f4f297353c&rft.title=Enrichment and heterogeneity of trace elements at the redox-interface of Fe-rich intertidal sediments&rft.identifier=http://epubs.scu.edu.au/data_collections/4&rft.publisher=Southern Cross University&rft.description=Redox-interfacial sediments can undergo radical geochemical changes with oscillating tides. In this study, we examine trace element enrichment and availability, at both landscape and pedon-scales, in the surface sediments of a remediating acidic tidalwetland. Fe-rich sediments at the surface-water interface (0–10mmin depth) were collected across an elevation gradient spanning the supratidal to subtidal range. These sediments were analysed for solid phase Fe fractions and trace elements (As, Pb, Cr, Cu, Mn, Ni, Zn, V, B, Co, Mo, Ba and U) via dilute HCl-extractions and total digests. Their concentrations were compared with those of underlying (0.05–0.65 m in depth) former sulfuric horizon sediments of a coastal acid sulfate soil (CASS). Reactive Fe was enriched at the redox interface by up to 16 times (197 g Fe/kg) that of the former sulfuric horizon. The proportion of total trace elements associated with reactive phases was high in interfacial sediments, representing over 90% of B and U and 50% of Pb, Cu, Zn, V and Ba extractable by dilute HCl. The interfacial sediments were particularly enriched in reactive Cr, Cu, Ni, Zn, B, Mo and U, with reactive B, Mo and U concentrations between 5 and 10 times greater than in the former sulfuric horizon. Surface enrichment of trace elements is strongly coassociated with Fe(III) mineralisation, likely via sorption and co-precipitation processes. Enrichment is highly spatially heterogeneous and is strongly influenced by elevation and tidal zonation at a landscape-scale and by sediment micro-topography and preferential advective transport via surface connected macropores at the pedon-scale. The results from this study provide new insights to the processes influencing trace element enrichment in Fe-rich redox-interfacial sediments across a remediating acidic tidal wetland.&rft.creator=Richard T Bush&rft.date=2015&rft.coverage=East Trinity Cairns&rft.coverage=145.82555379999997,-16.8932854&rft_rights=Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/&rft_subject=Acid Sulfate Soils&rft_subject=Iron&rft_subject=Trace Elements&rft_subject=Tidal Wetland&rft_subject=Remediation&rft.type=dataset&rft.language=English Go to Data Providers

Licence & Rights:

Non-Commercial Licence view details
CC-BY-NC-SA

Creative Commons Attribution-NonCommercial-ShareAlike
http://creativecommons.org/licenses/by-nc-sa/3.0/

Full description

Redox-interfacial sediments can undergo radical geochemical changes with oscillating tides. In this study, we examine trace element enrichment and availability, at both landscape and pedon-scales, in the surface sediments of a remediating acidic tidalwetland. Fe-rich sediments at the surface-water interface (0–10mmin depth) were collected across an elevation gradient spanning the supratidal to subtidal range. These sediments were analysed for solid phase Fe fractions and trace elements (As, Pb, Cr, Cu, Mn, Ni, Zn, V, B, Co, Mo, Ba and U) via dilute HCl-extractions and total digests. Their concentrations were compared with those of underlying (0.05–0.65 m in depth) former sulfuric horizon sediments of a coastal acid sulfate soil (CASS). Reactive Fe was enriched at the redox interface by up to 16 times (197 g Fe/kg) that of the former sulfuric horizon. The proportion of total trace elements associated with reactive phases was high in interfacial sediments, representing over 90% of B and U and 50% of Pb, Cu, Zn, V and Ba extractable by dilute HCl. The interfacial sediments were particularly enriched in reactive Cr, Cu, Ni, Zn, B, Mo and U, with reactive B, Mo and U concentrations between 5 and 10 times greater than in the former sulfuric horizon. Surface enrichment of trace elements is strongly coassociated with Fe(III) mineralisation, likely via sorption and co-precipitation processes. Enrichment is highly spatially heterogeneous and is strongly influenced by elevation and tidal zonation at a landscape-scale and by sediment micro-topography and preferential advective transport via surface connected macropores at the pedon-scale. The results from this study provide new insights to the processes influencing trace element enrichment in Fe-rich redox-interfacial sediments across a remediating acidic tidal wetland.

Available:

Issued:

Data time period: 01 10 2007 to 01 10 2010

145.82555379999997,-16.8932854

145.8255538,-16.8932854

text: East Trinity Cairns

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover